
11.1 | Rolling Motion

Learning Objectives

By the end of this section, you will be able to:

• Describe the physics of rolling motion without slipping

• Explain how linear variables are related to angular variables for the case of rolling motion
without slipping

• Find the linear and angular accelerations in rolling motion with and without slipping

• Calculate the static friction force associated with rolling motion without slipping

• Use energy conservation to analyze rolling motion

Rolling motion is that common combination of rotational and translational motion that we see everywhere, every day. Think
about the different situations of wheels moving on a car along a highway, or wheels on a plane landing on a runway, or
wheels on a robotic explorer on another planet. Understanding the forces and torques involved in rolling motion is a crucial
factor in many different types of situations.

For analyzing rolling motion in this chapter, refer to Figure 10.20 in Fixed-Axis Rotation to find moments of inertia of
some common geometrical objects. You may also find it useful in other calculations involving rotation.

Rolling Motion without Slipping
People have observed rolling motion without slipping ever since the invention of the wheel. For example, we can look at the
interaction of a car’s tires and the surface of the road. If the driver depresses the accelerator to the floor, such that the tires
spin without the car moving forward, there must be kinetic friction between the wheels and the surface of the road. If the
driver depresses the accelerator slowly, causing the car to move forward, then the tires roll without slipping. It is surprising
to most people that, in fact, the bottom of the wheel is at rest with respect to the ground, indicating there must be static
friction between the tires and the road surface. In Figure 11.2, the bicycle is in motion with the rider staying upright. The
tires have contact with the road surface, and, even though they are rolling, the bottoms of the tires deform slightly, do not
slip, and are at rest with respect to the road surface for a measurable amount of time. There must be static friction between
the tire and the road surface for this to be so.

Figure 11.2 (a) The bicycle moves forward, and its tires do not slip. The bottom of the slightly deformed tire is at rest with
respect to the road surface for a measurable amount of time. (b) This image shows that the top of a rolling wheel appears blurred
by its motion, but the bottom of the wheel is instantaneously at rest. (credit a: modification of work by Nelson Lourenço; credit b:
modification of work by Colin Rose)
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To analyze rolling without slipping, we first derive the linear variables of velocity and acceleration of the center of mass of
the wheel in terms of the angular variables that describe the wheel’s motion. The situation is shown in Figure 11.3.

Figure 11.3 (a) A wheel is pulled across a horizontal surface by a force F→ . The force of static

friction f
→

S, | f
→

S| ≤ µS N is large enough to keep it from slipping. (b) The linear velocity and

acceleration vectors of the center of mass and the relevant expressions for ω and α . Point P is at rest

relative to the surface. (c) Relative to the center of mass (CM) frame, point P has linear velocity

−Rω i
^

.

From Figure 11.3(a), we see the force vectors involved in preventing the wheel from slipping. In (b), point P that touches

the surface is at rest relative to the surface. Relative to the center of mass, point P has velocity −Rω i
^

, where R is the

radius of the wheel and ω is the wheel’s angular velocity about its axis. Since the wheel is rolling, the velocity of P with

respect to the surface is its velocity with respect to the center of mass plus the velocity of the center of mass with respect to
the surface:

v→ P = −Rω i
^

+ vCM i
^

.

Since the velocity of P relative to the surface is zero, vP = 0 , this says that

(11.1)vCM = Rω.

Thus, the velocity of the wheel’s center of mass is its radius times the angular velocity about its axis. We show the
correspondence of the linear variable on the left side of the equation with the angular variable on the right side of the
equation. This is done below for the linear acceleration.

If we differentiate Equation 11.1 on the left side of the equation, we obtain an expression for the linear acceleration of the

center of mass. On the right side of the equation, R is a constant and since α = dω
dt , we have

(11.2)aCM = Rα.

Furthermore, we can find the distance the wheel travels in terms of angular variables by referring to Figure 11.4. As the
wheel rolls from point A to point B, its outer surface maps onto the ground by exactly the distance travelled, which is dCM.
We see from Figure 11.4 that the length of the outer surface that maps onto the ground is the arc length Rθ . Equating the
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two distances, we obtain

(11.3)dCM = Rθ.

Figure 11.4 As the wheel rolls on the surface, the arc length Rθ
from A to B maps onto the surface, corresponding to the distance
dCM that the center of mass has moved.

Example 11.1

Rolling Down an Inclined Plane

A solid cylinder rolls down an inclined plane without slipping, starting from rest. It has mass m and radius r. (a)
What is its acceleration? (b) What condition must the coefficient of static friction µS satisfy so the cylinder does

not slip?

Strategy

Draw a sketch and free-body diagram, and choose a coordinate system. We put x in the direction down the plane
and y upward perpendicular to the plane. Identify the forces involved. These are the normal force, the force of
gravity, and the force due to friction. Write down Newton’s laws in the x- and y-directions, and Newton’s law for
rotation, and then solve for the acceleration and force due to friction.

Solution
a. The free-body diagram and sketch are shown in Figure 11.5, including the normal force, components

of the weight, and the static friction force. There is barely enough friction to keep the cylinder rolling
without slipping. Since there is no slipping, the magnitude of the friction force is less than or equal to
µS N . Writing down Newton’s laws in the x- and y-directions, we have

∑ Fx = max; ∑ Fy = may.
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Figure 11.5 A solid cylinder rolls down an inclined plane without slipping
from rest. The coordinate system has x in the direction down the inclined
plane and y perpendicular to the plane. The free-body diagram is shown with
the normal force, the static friction force, and the components of the weight

m g→ . Friction makes the cylinder roll down the plane rather than slip.

Substituting in from the free-body diagram,

mg sin θ − fS = m(aCM)x,

N − mg cos θ = 0,
fS ≤ µS N,

we can then solve for the linear acceleration of the center of mass from these equations:

(aCM)x = g(sin θ − µS cos θ).

However, it is useful to express the linear acceleration in terms of the moment of inertia. For this, we
write down Newton’s second law for rotation,

∑ τCM = ICM α.

The torques are calculated about the axis through the center of mass of the cylinder. The only nonzero
torque is provided by the friction force. We have

fS r = ICM α.

Finally, the linear acceleration is related to the angular acceleration by

(aCM)x = rα.

These equations can be used to solve for aCM, α, and fS in terms of the moment of inertia, where we

have dropped the x-subscript. We write aCM in terms of the vertical component of gravity and the friction

force, and make the following substitutions.

aCM = gsin θ − fS
m

fS = ICM α
r = ICM aCM

r2

From this we obtain
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11.1

aCM = g sin θ − ICM aCM
mr2 ,

= mg sin θ
m + (ICM/r2)

.

Note that this result is independent of the coefficient of static friction, µS .

Since we have a solid cylinder, from Figure 10.20, we have ICM = mr2/2 and

aCM = mg sin θ
m + (mr2/2r2)

= 2
3g sin θ.

Therefore, we have

α = aCM
r = 2

3rg sin θ.

b. Because slipping does not occur, fS ≤ µS N . Solving for the friction force,

fS = ICM
α
r = ICM

(aCM)
r2 = ICM

r2

⎛

⎝
⎜ mg sin θ
m + (ICM/r2)

⎞

⎠
⎟ = mgICM sin θ

mr2 + ICM
.

Substituting this expression into the condition for no slipping, and noting that N = mg cos θ , we have

mgICM sin θ
mr2 + ICM

≤ µS mg cos θ

or

µS ≥ tan θ
1 + (mr2/ICM)

.

For the solid cylinder, this becomes

µS ≥ tan θ
1 + (2mr2/mr2)

= 1
3tan θ.

Significance
a. The linear acceleration is linearly proportional to sin θ. Thus, the greater the angle of the incline, the

greater the linear acceleration, as would be expected. The angular acceleration, however, is linearly
proportional to sin θ and inversely proportional to the radius of the cylinder. Thus, the larger the radius,

the smaller the angular acceleration.

b. For no slipping to occur, the coefficient of static friction must be greater than or equal to (1/3)tan θ .

Thus, the greater the angle of incline, the greater the coefficient of static friction must be to prevent the
cylinder from slipping.

Check Your Understanding A hollow cylinder is on an incline at an angle of 60°. The coefficient of

static friction on the surface is µS = 0.6 . (a) Does the cylinder roll without slipping? (b) Will a solid cylinder

roll without slipping?

It is worthwhile to repeat the equation derived in this example for the acceleration of an object rolling without slipping:
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(11.4)aCM = mg sin θ
m + (ICM/r2)

.

This is a very useful equation for solving problems involving rolling without slipping. Note that the acceleration is less than
that for an object sliding down a frictionless plane with no rotation. The acceleration will also be different for two rotating
cylinders with different rotational inertias.

Rolling Motion with Slipping
In the case of rolling motion with slipping, we must use the coefficient of kinetic friction, which gives rise to the
kinetic friction force since static friction is not present. The situation is shown in Figure 11.6. In the case of slipping,

vCM − Rω ≠ 0 , because point P on the wheel is not at rest on the surface, and vP ≠ 0 . Thus, ω ≠ vCM
R , α ≠ aCM

R .

Figure 11.6 (a) Kinetic friction arises between the wheel and
the surface because the wheel is slipping. (b) The simple
relationships between the linear and angular variables are no
longer valid.

Example 11.2

Rolling Down an Inclined Plane with Slipping

A solid cylinder rolls down an inclined plane from rest and undergoes slipping (Figure 11.7). It has mass m and
radius r. (a) What is its linear acceleration? (b) What is its angular acceleration about an axis through the center
of mass?

Strategy

Draw a sketch and free-body diagram showing the forces involved. The free-body diagram is similar to the no-
slipping case except for the friction force, which is kinetic instead of static. Use Newton’s second law to solve for
the acceleration in the x-direction. Use Newton’s second law of rotation to solve for the angular acceleration.
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Solution

Figure 11.7 A solid cylinder rolls down an inclined plane from rest and
undergoes slipping. The coordinate system has x in the direction down the
inclined plane and y upward perpendicular to the plane. The free-body
diagram shows the normal force, kinetic friction force, and the components of

the weight m g→ .

The sum of the forces in the y-direction is zero, so the friction force is now fk = µk N = µk mgcos θ.

Newton’s second law in the x-direction becomes

∑ Fx = max,

mg sin θ − µk mg cos θ = m(aCM)x,

or

(aCM)x = g(sin θ − µK cos θ).

The friction force provides the only torque about the axis through the center of mass, so Newton’s second law of
rotation becomes

∑ τCM = ICM α,

fk r = ICM α = 1
2mr2 α.

Solving for α , we have

α = 2 fk
mr = 2µk g cos θ

r .

Significance

We write the linear and angular accelerations in terms of the coefficient of kinetic friction. The linear acceleration
is the same as that found for an object sliding down an inclined plane with kinetic friction. The angular
acceleration about the axis of rotation is linearly proportional to the normal force, which depends on the cosine of
the angle of inclination. As θ → 90° , this force goes to zero, and, thus, the angular acceleration goes to zero.

Conservation of Mechanical Energy in Rolling Motion
In the preceding chapter, we introduced rotational kinetic energy. Any rolling object carries rotational kinetic energy, as well
as translational kinetic energy and potential energy if the system requires. Including the gravitational potential energy, the
total mechanical energy of an object rolling is

ET = 1
2mvCM

2 + 1
2ICM ω2 + mgh.

In the absence of any nonconservative forces that would take energy out of the system in the form of heat, the total
energy of a rolling object without slipping is conserved and is constant throughout the motion. Examples where energy
is not conserved are a rolling object that is slipping, production of heat as a result of kinetic friction, and a rolling object

546 Chapter 11 | Angular Momentum

This OpenStax book is available for free at http://cnx.org/content/col12031/1.10



encountering air resistance.

You may ask why a rolling object that is not slipping conserves energy, since the static friction force is nonconservative.
The answer can be found by referring back to Figure 11.3. Point P in contact with the surface is at rest with respect to

the surface. Therefore, its infinitesimal displacement d r→ with respect to the surface is zero, and the incremental work

done by the static friction force is zero. We can apply energy conservation to our study of rolling motion to bring out some
interesting results.

Example 11.3

Curiosity Rover

The Curiosity rover, shown in Figure 11.8, was deployed on Mars on August 6, 2012. The wheels of the rover
have a radius of 25 cm. Suppose astronauts arrive on Mars in the year 2050 and find the now-inoperative Curiosity
on the side of a basin. While they are dismantling the rover, an astronaut accidentally loses a grip on one of the
wheels, which rolls without slipping down into the bottom of the basin 25 meters below. If the wheel has a mass
of 5 kg, what is its velocity at the bottom of the basin?

Figure 11.8 The NASA Mars Science Laboratory rover
Curiosity during testing on June 3, 2011. The location is inside
the Spacecraft Assembly Facility at NASA’s Jet Propulsion
Laboratory in Pasadena, California. (credit: NASA/JPL-Caltech)

Strategy

We use mechanical energy conservation to analyze the problem. At the top of the hill, the wheel is at rest and
has only potential energy. At the bottom of the basin, the wheel has rotational and translational kinetic energy,
which must be equal to the initial potential energy by energy conservation. Since the wheel is rolling without
slipping, we use the relation vCM = rω to relate the translational variables to the rotational variables in the

energy conservation equation. We then solve for the velocity. From Figure 11.8, we see that a hollow cylinder
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is a good approximation for the wheel, so we can use this moment of inertia to simplify the calculation.

Solution

Energy at the top of the basin equals energy at the bottom:

mgh = 1
2mvCM

2 + 1
2ICM ω2.

The known quantities are ICM = mr2 , r = 0.25 m, and h = 25.0 m .

We rewrite the energy conservation equation eliminating ω by using ω = vCM
r . We have

mgh = 1
2mvCM

2 + 1
2mr2 vCM

2

r2

or

gh = 1
2vCM

2 + 1
2vCM

2 ⇒ vCM = gh.

On Mars, the acceleration of gravity is 3.71 m/s2, which gives the magnitude of the velocity at the bottom of

the basin as

vCM = (3.71 m/s2)25.0 m = 9.63 m/s.

Significance

This is a fairly accurate result considering that Mars has very little atmosphere, and the loss of energy due to air
resistance would be minimal. The result also assumes that the terrain is smooth, such that the wheel wouldn’t
encounter rocks and bumps along the way.

Also, in this example, the kinetic energy, or energy of motion, is equally shared between linear and rotational
motion. If we look at the moments of inertia in Figure 10.20, we see that the hollow cylinder has the largest
moment of inertia for a given radius and mass. If the wheels of the rover were solid and approximated by solid
cylinders, for example, there would be more kinetic energy in linear motion than in rotational motion. This would
give the wheel a larger linear velocity than the hollow cylinder approximation. Thus, the solid cylinder would
reach the bottom of the basin faster than the hollow cylinder.

11.2 | Angular Momentum

Learning Objectives

By the end of this section, you will be able to:

• Describe the vector nature of angular momentum

• Find the total angular momentum and torque about a designated origin of a system of particles

• Calculate the angular momentum of a rigid body rotating about a fixed axis

• Calculate the torque on a rigid body rotating about a fixed axis

• Use conservation of angular momentum in the analysis of objects that change their rotation
rate

Why does Earth keep on spinning? What started it spinning to begin with? Why doesn’t Earth’s gravitational attraction not
bring the Moon crashing in toward Earth? And how does an ice skater manage to spin faster and faster simply by pulling
her arms in? Why does she not have to exert a torque to spin faster?

Questions like these have answers based in angular momentum, the rotational analog to linear momentum. In this chapter,
we first define and then explore angular momentum from a variety of viewpoints. First, however, we investigate the angular
momentum of a single particle. This allows us to develop angular momentum for a system of particles and for a rigid body.
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